Differential Control of Clustering of the Sodium Channels Nav1.2 and Nav1.6 at Developing CNS Nodes of Ranvier

نویسندگان

  • Miriam R Kaplan
  • Min-Hee Cho
  • Erik M Ullian
  • Lori L Isom
  • S.Rock Levinson
  • Ben A Barres
چکیده

Na(v)1.6 is the main sodium channel isoform at adult nodes of Ranvier. Here, we show that Na(v)1.2 and its beta2 subunit, but not Na(v)1.6 or beta1, are clustered in developing central nervous system nodes and that clustering of Na(v)1.2 and Na(v)1.6 is differentially controlled. Oligodendrocyte-conditioned medium is sufficient to induce clustering of Na(v)1.2 alpha and beta2 subunits along central nervous system axons in vitro. This clustering is regulated by electrical activity and requires an intact actin cytoskeleton and synthesis of a non-sodium channel protein. Neither soluble- or contact-mediated glial signals induce clustering of Na(v)1.6 or beta1 in a nonmyelinating culture system. These data reveal that the sequential clustering of Na(v)1.2 and Na(v)1.6 channels is differentially controlled and suggest that myelination induces Na(v)1.6 clustering.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular identity of axonal sodium channels in human cortical pyramidal cells

Studies in rodents revealed that selective accumulation of Na(+) channel subtypes at the axon initial segment (AIS) determines action potential (AP) initiation and backpropagation in cortical pyramidal cells (PCs); however, in human cortex, the molecular identity of Na(+) channels distributed at PC axons, including the AIS and the nodes of Ranvier, remains unclear. We performed immunostaining e...

متن کامل

Abnormal sodium channel distribution in optic nerve axons in a model of inflammatory demyelination.

Myelinated fibres are characterized by the aggregation of Nav1.6 sodium channels within the axon membrane at nodes of Ranvier, where their presence supports saltatory conduction. In this study, we used immunocytochemical methods to study the organization of sodium channels along axons in experimental allergic encephalomyelitis (EAE), a model of multiple sclerosis. We studied axons within the op...

متن کامل

Paranodal interactions regulate expression of sodium channel subtypes and provide a diffusion barrier for the node of Ranvier.

The node of Ranvier is a distinct domain of myelinated axons that is highly enriched in sodium channels and is critical for impulse propagation. During development, the channel subtypes expressed at the node undergo a transition from Nav1.2 to Nav1.6. Specialized junctions that form between the paranodal glial membranes and axon flank the nodes and are candidates to regulate their maturation an...

متن کامل

Localization and Distribution of Voltage-Gated Na Channels

There are nine recognized members of the voltage-gated Na+ channel family (VGSC; Nav1.1Nav1.9). Of these, Nav1.1, Nav1.2, Nav1.3 and Nav1.6 are highly (but not exclusively) expressed in the central nervous system (CNS), whereas Nav1.7, Nav1.8 and Nav1.9 demonstrate a more restricted expression pattern in autonomic and sensory neurons of the peripheral nervous system (PNS). Nav1.4 and Nav1.5 rep...

متن کامل

Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger.

Although voltage-gated sodium channels are known to be deployed along experimentally demyelinated axons, the molecular identities of the sodium channels expressed along axons in human demyelinating diseases such as multiple sclerosis (MS) have not been determined. Here we demonstrate changes in the expression of sodium channels in demyelinated axons in MS, with Nav1.6 confined to nodes of Ranvi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2001